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……Targeted therapy: “one gene, one target”

Majority of patients remain untreated by targeted therapies

Can AI help us identify the right drug for such cancer patients?

One day….
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Cancer is a genetic disease, i.e., it is caused by changes to genes (mutations)
Cancer is a leading cause of death worldwide (one-in-six deaths, 2020)

https://www.cancer.gov/about-cancer/understanding/what-is-cancer 

Each cell in our body contains 23 pairs of chromosomes

Each chromosome is a sequence of “base pairs” , bases 
are A, C, G, T

Gene: subsequence of the chromosome which has 
functional importance

~20,000 genes have been identified

https://www.who.int/news-room/fact-sheets/detail/cancer

CANCER

https://www.cancer.gov/about-cancer/understanding/what-is-cancer
https://www.who.int/news-room/fact-sheets/detail/cancer


➢ Treatment remains challenging 

• Complex disease: Every cancer has an individual set of mutations
• A drug that works for one cancer patient, might have absolutely no effect on another

➢ Treatment must be tailored to each patient: personalized therapy

https://www.worldwidecancerresearch.org/news-opinion/2021/march/why-havent-we-cured-cancer-yet/
https://en.wikipedia.org/wiki/Personalized_medicine

CANCER TREATMENT

https://www.worldwidecancerresearch.org/news-opinion/2021/march/why-havent-we-cured-cancer-yet/
https://en.wikipedia.org/wiki/Personalized_medicine
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➢Many similar data collection efforts to 
understand cancer

Weinstein, J. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics 2013

CANCER GENOMICS DATA

The Cancer Genome Atlas (TCGA) 

Since 2006

> 11,000 patients

2.5 PetaBytes of Data

33 cancer types



…ACCTTTCGGCCGGACCCCC…

G1 G2 G3 G4 G5 G6 G7 G8 G9 …

1 0 1 0 0 0 0 1 0 …

Genes of interest:

Binary indicator: 1 → mutation in gene, 0 → no mutation

G1 G2 G3 G4 G5 G6 G7 G8 G9 …

6 2.1 3 0 0 0 0 1 0 …

Count or real value: indicates activity level of gene

Genes of interest:

G1: R273C, G1: S1372L, G2: L145V …  
In gene G1, at location 273 a mutation changed R to C in the protein

REPRESENTING GENOMIC DATA

Raw sequence (rarely used)

Mutation Vector

Gene Expression Vector

Sequence of Mutations



1. Response Evaluation Criteria In Solid Tumors (RECIST)

➢  Standard way to measure how well a cancer patient responds to treatment.

RECIST

CR Complete Response

PR Partial Response

PD Progressive Disease

SD Stable Disease

Good response (label +1)

Bad response (label -1)

DRUG RESPONSE MEASUREMENTS

2. Progression-free Survival (PFS)      

➢ The length of time during and after the treatment (days/months/years), that a  
patient lives without the cancer getting worse.



➢Given:

• a patient’s genomic profile and 

• a drug

➢Will the response of the patient to 
the drug be good?

One day…
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DRUG RESPONSE PREDICTION (DRP)



➢ 𝑋: Patient’s genomic data (e.g., mutation vector or gene expression)
➢ 𝑌: RECIST value after administering drug 𝑑

➢ 𝑌 ~ 𝑓𝑑(𝑋) → binary classification
➢    Challenge

• 𝑋: abundant, but…
• 𝑌: extremely limited for any drug 𝑑

➢    Why?
• Each patient is given one/few drugs, counterfactual unknown

DRUG RESPONSE PREDICTION (DRP)
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CELL LINES: A RELATED “DOMAIN”

➢ Extract cancer cells and clone them in lab (living cells, continue growing)
➢ Ensures each cell has same genomic data (𝑋)

➢ Administer multiple drugs on cell lines, measure response 𝑌



Vis, D. J. et al. Multilevel models improve precision and speed of IC50 estimates. Pharmacogenomics 2016.

Area under the Dose Response Curve (AUDRC)

• Administer progressively increasing concentration (X-axis) 
of drug and measure the amount of cancer cells (Y-axis) 
killed: Dose Response Curve (DRC)

• Lesser concentration kills more cells → more effective drug 
→Lower AUDRC

• E.g. efficacy of III > I > II

DRUG RESPONSE MEASUREMENT IN CELL LINES

Real-valued [0,1]
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CELL LINES: A RELATED “DOMAIN”

➢ Extract cancer cells and clone them in lab (living cells, continue growing)
➢ Ensures each cell has same genomic data (𝑋)

➢ Administer multiple drugs on cell lines, measure response 𝑌

➢ Can a Drug Response Prediction model on cell lines 𝒀 ~ 𝒇𝒅(𝑿) work for patients?
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CELL LINES: A RELATED “DOMAIN”

No: drug responses differ across patients and cell lines

➢ Extract cancer cells and clone them in lab (living cells, continue growing)
➢ Ensures each cell has same genomic data (𝑋)

➢ Administer multiple drugs on cell lines, measure response 𝑌

➢ Can a Drug Response Prediction model on cell lines 𝒀 ~ 𝒇𝒅(𝑿) work for patients?



Sample acquisition

Sequencing

Mutation profile

Distribution of Mutations

Patient Cell line

Responder

Non-Responder

Targeted Treatment

Measurement of
response

Responses

RECIST AUDRC

INPUT SPACE
DISCREPANCY

OUTPUT SPACE
DISCREPANCY

Binary Classification Regression



➢    Given:

➢    Infer: Drug Response Prediction model
     𝑓𝑡

𝑑 :  𝑌𝑡
𝑑 ~ 𝑓𝑡

𝑑 𝑋𝑡 ,  ∀ drug 𝑑 ∈ {𝑑1, 𝑑2, … 𝑑𝑛}

Domain Genomic
Profile

Drug Response #samples 𝑁𝑝 ≪ 𝑁𝑐 ≪ 𝑁𝑡
𝑃 𝑋𝑐 ≠ 𝑃 𝑋𝑡

𝑓𝑐
𝑑 ∼ 𝑓𝑡

𝑑

where 
𝑌𝑐

𝑑 ~ 𝑓𝑐
𝑑 𝑋𝑐 , 𝑌𝑡

𝑑 ~ 𝑓𝑡
𝑑(𝑋𝑡)

 

Cell Lines 𝑋𝑐 𝑌𝑐
𝑑 ∈ 𝑅 (AADRC) 𝑁𝑐 labeled

Patients 𝑋𝑡 𝑌𝑡
𝑑 ∈ {0,1} (RECIST) 𝑁𝑝 labeled

𝑁𝑡 unlabeled

PROBLEM STATEMENT
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➢Input Data type
➢Gene expression data

• Assumed as inputs in previous methods 

• Not measured in FDA approved clinical panels

➢Mutation data

• Very sparse (typically a patient has ~10 

mutations in panel out of ~million possible)
• Previous methods do not perform well with 

such inputs

➢Drug Repurposing

➢Use of a drug for one cancer in another cancer
➢Need predictions on drugs not in training set

G1 G2 G3 G4 G5 G6 G7 G8 G9 …

6 2.1 3 0 0 0 0 1 0 …

Count or real value: indicates activity level of gene

Genes of interest:

G1: R273C, G1: S1372L, G2: L145V …  
In gene G1, at location 273 a mutation changed R to C in the protein

DO PREVIOUS METHODS WORK IN THE CLINIC?



DRP Requirements

For clinical translation
• Training with mutations available in clinical sequencing reports
• Predict on drugs unseen during training
• Model varying length mutations
• Utilise all available auxiliary patient response information (PFS)
From prior DRP literature
• Handle input discrepancy
• Handle output discrepancy
• Model patient mutation heterogeneity

3



Model Design

Requirement Considerations Design Choice

Model varying length mutations Genes and mutations to be 
tokenized

Use transformers on gene and 
mutation level tokens

4



Model Design

Requirement Considerations Design Choice

Model varying length mutations Genes and mutations to be 
tokenized

Use transformers on gene and 
mutation level tokens

Use all patient response-related 
information

Model survival information (PFS) Pretraining transformers to 
predict survival

5



Model Training

Stage 1: 
Pretraining 

transformer with 
survival data

Stage 2:
Training the Multi-task 
learning (MTL) model

• Use all patient 
response-related 
information (PFS)

• Handles varying 
length mutation data

• Training on 
mutations

• Handles input 
discrepancy

• Handles output 
discrepancy

• Allows drug 
repurposing

6
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Patient 
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Each gene 
has Y 
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Document
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X sentences
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sentence 

has Y words

DISCRETE SEQUENTIAL DATA



Patient 
(report)

X genes [ X 
<= 324]

Each gene 
has Y 

mutations

Document
(NLP)

X sentences

Each 
sentence 

has Y words

Patient Representation

Gene Representation

Mutation Representation

Document Embedding

Sentence Embedding

Word Embedding

DISCRETE SEQUENTIAL DATA



1. Capture functional effects of mutations
• Features indicating harmfulness of each mutation

2. Transformers for sequential inputs
• Tokenization at gene and mutation level

3. Survival data for Supervised Representation Learning
• Pretraining and joint multi-task learning

OUR APPROACH



➢Clinvar: 3 indicators 
pathogenic, benign, 
significance unknown

➢GPD: 3 location indicators 
protein information unit, 
linker unit, non-coding unit

➢Annovar: Predictions from 
17 algorithms indicating 
deleteriousness 
(harmful/not)

23-dimensional feature vector per mutation

…
gene1 gene2 gene3 gene4

m1 m2 n1 p1 q1   q2  q3

FUNCTIONAL ANNOTATIONS



…
gene1 gene2 gene3 gene4

m1 m2 n1 p1 q1   q2  q3

TRANSFORMERS FOR SEQUENTIAL INPUTS



Pretrain

• Train Neural MTLR
• Survival Data only

Joint 
Training

• Train Survival, Cell Line 
Response, Patient Response

• Survival, Cell Line, Patient Data

MULTITASK LEARNING



Yu, Chun-Nam, et al. "Learning patient-specific cancer survival distributions as a sequence of dependent regressors." NIPS 2011.

Survival Time:
t1    t2    t3    t4    t5                       …                    tm

For each patient:   𝑦 = (𝑦1, 𝑦2, 𝑦3, 𝑦4  … 𝑦𝑚)
𝑦𝑖 ∈ 0,1 : survival status at time 𝑡𝑖

Survival time s:
𝑦𝑖 = 0 (no death) for all 𝑖 with 𝑡𝑖 < 𝑠
𝑦𝑖 = 1 (death) for all 𝑖 with 𝑡𝑖 ≥ 𝑠

Logistic Regression

(𝑦1, 𝑦2, 𝑦3, 𝑦4  … 𝑦𝑚)

Marginalize over unobserved variables (EM)

MULTITASK LOGISTIC REGRESSION



Neural MTLR

https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system

0011001100010100011100011

SMILES String

Morgan fingerprint

Drug
Embedding

PRETRAINING WITH SURVIVAL PREDICTION



➢ Evaluation only on patients: 3 random 80-20 splits of (sample, drug) pairs

➢ Binary classification task: RECIST category prediction
• Metrics: AUROC and AUPRC 

Domain Genomic
Profile

Drug 
Response 
(RECIST)

Survival 
(PFS)

#(sample, 
drug) pairs

Drugs tested

Cell Lines 324 genes from 
FoundationOne 
panel

Mutation 
sequences

689 3632
Patients 470 2512 15732 drugs with 

RECIST labels 
in > 80 
patients

EXPERIMENTS



EXPERIMENTAL RESULTS



More details/results: https://arxiv.org/abs/2402.10551

Aishwarya Jayagopal, Hansheng Xue, Ziyang He, Robert J Walsh, Krishna Kumar H,
David SP Tan, Tuan Z Tan, Jason J Pitt, Anand D Jeyasekharan, Vaibhav Rajan

Personalised Drug Identifier for Cancer Treatment with Transformers using Auxiliary Information
KDD 2024

EXPERIMENTAL RESULTS

https://arxiv.org/abs/2402.10551


One Last Requirement…



DRP Requirements

For clinical translation
• Training with mutations available in clinical sequencing reports
• Predict on drugs unseen during training
• Model varying length mutations
• Utilise all available auxiliary patient response information (PFS)
From prior DRP literature
• Handle input discrepancy
• Handle output discrepancy
• Model patient mutation heterogeneity

20



GANDALF: Generative AtteNtion 
based Data Augmentation and 
predictive modeLing Framework

21

ICLR 2025 

Jayagopal, A., Zhang, Y., Walsh, R.J., Tan, T.Z., Jeyasekharan, A.D. and Rajan, V., 2025. GANDALF: Generative AttentioN based Data Augmentation and predictive 
modeLing Framework for personalized cancer treatment.



Model Design

Requirement Considerations Design Choice

Model patient mutation 
heterogeneity

Generate more patient-like data, 
from cell line profiles

Generate samples from cell lines, 
using diffusion models

22



Treatment Recommendation System



➢ Treatment planning for 
complex cancer cases is 
increasingly done by a 
Molecular Tumor Board

➢ Several expert clinicians 
collectively decide on the 
most suitable treatment 

MOLECULAR TUMOR BOARD (MTB)



AI-IN-THE-LOOP MTB



https://pharmacope.ai/

Deployed on Amazon LightSail instance

TREATMENT RECOMMENDATION SYSTEM @ NUH, SINGAPORE

https://pharmacope.ai/


https://pharmacope.ai/

TREATMENT RECOMMENDATION SYSTEM @ NUH, SINGAPORE

https://pharmacope.ai/


➢   Clinical decision of prescribing a specific drug

• Clinical guidelines
• Evidence of efficacy from:

1. Previous clinical trials
2. Mechanism of action

➢Multiple incomplete or indirect sources of evidence needed 
• Even to evaluate a DRP model in a clinical trial

Mostly unknown

Completely or partially unknown

SUPPORTING EVIDENCE: WHY?



• XAI algorithms to highlight genes most important for prediction

Model Explainability

• Gene-drug associations, clinical trial information (mostly limited to effects of single gene mutations)

Auxiliary Drug Databases

• Difference in the prediction (for the input patient) to the predictions on a reference set

Drug-level validation across patients

• Distribution of predictions for all drugs

Patient-level validation across drugs

SUPPORTING EVIDENCE



Difference in the prediction (for the input patient) to the predictions on a reference set Distribution of predictions for all drugs

SUPPORTING EVIDENCE



https://clinicaltrials.gov/study/NCT05719428

Clinical trial

https://clinicaltrials.gov/study/NCT05719428


* To the best of our knowledge

AI for 
Personalized 

Cancer 
Treatment

Advanced state-of-the-art in 
Cancer Drug Response 

Prediction (DRP) literature

First* (& current best) DRP 
model on clinically available 

genomic data for personalized 
cancer treatment

First* clinical trial where patients 
are being treated in a Molecular 

Tumor Board with our DRP-based 
recommendations

https://clinicaltrials.gov/study/NCT05719428

WISER: ICML 2024
GANDALF: ICLR 2025

DRUID: Cell iScience
PREDICT-AI: KDD 2024

CONCLUSION

https://clinicaltrials.gov/study/NCT05719428
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• LLMs
• Gene representations from Knowledge Graphs

Techniques

• Drug combinations
• Additional inputs – clinical data, genomic rearrangements 
• Temporality

Model Improvements

• Supporting Evidence from External Knowledge Bases
• Integrate supporting evidence in ranking recommendations
• Improved AI-in-the-loop system for collective decision making in MTBs

Decision Support Systems

FUTURE DIRECTIONS



Thank you!

Vaibhav
Thanks to Aishwarya Jayagopal for most of the slides


